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An adiabatic molecular-dynamics method is developed and used to study the Muser-Robbins model for dry
friction �i.e., nonzero kinetic friction in the slow sliding speed limit�. In this model, dry friction between two
crystalline surfaces rotated with respect to each other is due to mobile molecules �i.e., dirt particles� adsorbed
at the interface. Our adiabatic method allows us to quickly locate interface potential-well minima, which
become unstable during sliding of the surfaces. Since dissipation due to friction in the slow sliding speed limit
results from mobile molecules dropping out of such unstable wells, our method provides a way to calculate dry
friction, which agrees extremely well with results found by conventional molecular dynamics for the same
system, but our method is more than a factor of 10 faster.
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I. INTRODUCTION

Static friction is the force needed to initiate motion be-
tween bodies. Dry friction is the kinetic friction in the slow
sliding speed limit. Muser et al. argued that for clean incom-
mensurate crystalline surfaces in contact there should be no
static friction, unless there are mobile molecules present at
the interface �1�. A dilute concentration of molecules, which
is initially randomly distributed over surfaces, will, in time,
move to the deepest interface potential wells. The deepest
interface potential wells occur when potential minima from
each of the two surfaces nearly coincide. When the two sur-
faces slide relative to each other, the locations of the poten-
tial minima no longer coincide and at some point an interface
potential minimum can become unstable. At that point, a
molecule in that well jumps into a deeper minimum. The
occurrence of such instabilities is likely to be the source of
energy dissipation due to kinetic friction in the slow sliding
speed limit. When an instability occurs, the molecule moves
a relatively large distance to the nearest stable well very
rapidly and stays there. When a well remains stable, a mol-
ecule residing in it stays at almost the same place during the
sliding of the two surfaces, if the surfaces are slid by equal
amounts in opposite directions.

For a dilute concentration of mobile molecules, an itera-
tive method, for treating the slow sliding speed limit for
noninteracting molecules, was developed by Daly et al. �2�,
which is much faster than molecular dynamics. For interact-
ing particles, however, this method is difficult to apply, and
hence it is still necessary to use molecular dynamics. In the
usual molecular-dynamics simulations �which we will refer
to as conventional molecular dynamics or CMDS�, we inte-
grate Newton’s laws numerically. Thus, in principle, we are
able to study the precise motion of all the particles in a
many-body system. In the problem that we are considering in
the slow sliding speed limit, in which we are only interested
in calculating the energy dissipation and the kinetic friction
that produces it, we do not need the detailed information that
we can obtain from CMDS. This is because in the slow
sliding speed limit, each molecule always remains at a mini-
mum of the interface potential, unless the potential well in

which a molecule resides becomes unstable �an unstable well
is illustrated in Fig. 1�. When this occurs, the molecule will
drop down into a lower-energy potential well. The kinetic
energy generated in this process is assumed to be rapidly
converted to various excitations of the solids. We believe that
this process is the main source of kinetic friction in the slow
sliding speed limit. Therefore, in order to obtain the friction
in the slow sliding speed limit, it is only necessary to study
the evolution of the interface potential wells and to deter-
mine when a well becomes unstable, as the molecules that
occupy such wells are the only ones that contribute signifi-
cantly to the friction in the slow sliding speed limit. There-
fore, we have developed an adiabatic molecular-dynamics
simulation �AMDS� method, which saves a considerable
amount of computer time by locating the unstable wells and
then calculating the force of friction from the energy losses
that occur as molecules drop out of unstable wells.

FIG. 1. An unstable potential well is illustrated.
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II. ADIABATIC AND CONVENTIONAL MOLECULAR-
DYNAMICS-SIMULATION METHODS

When we use the CMDS method to calculate kinetic fric-
tion in the slow sliding speed limit, we calculate all particles’
positions by solving the equations of motion for all particles.
In contrast, in the AMDS method, we divide the potential
wells into two types—stable and unstable. We deal with the
stable and unstable wells in different ways. For unstable
wells, we still use CMDS. For stable wells, we use an adia-
batic method. For stable potential wells during sliding from
position s to s±�s �where the plus sign is for the upper and
the minus sign is for the lower surface�, we choose �s
=0.005a �a is a lattice constant of a surface�, which is 50
times larger than the �s value used in our CMDS calcula-
tions �done for comparison�, for a surface-sliding speed of
0.001a / t0, where t0= �ma2 /V0�1/2 is the time scale in the
CMDS method. Here V0 is the strength of the surface poten-
tial and m is the mass of a molecule. For this small a value of
�s the location of the stable potential wells’ minima do not
change by much. In our slow sliding speed limit, the stable
potential wells change smoothly, thus, the particles occupy-
ing these wells change equilibrium positions smoothly. The
stable particles reach the new equilibrium positions in a rela-
tively short time �compared to the time needed for the stable
well changes� and hence the new equilibrium positions are
very close to the old ones �see more details in the Appendix�.
Therefore, for stable particles we have found that we require
only 100 iterations of the equation of motion to locate the
new equilibrium positions for each sliding step �s. If during
the sliding from s to s±�s, those stable wells occupied by
particles become unstable, we must switch to the conven-
tional method for a short time to deal with the unstable wells.
When these particles finally jump into the nearest stable
wells, we switch back to the adiabatic method. Since AMDS
can use a relatively large sliding step and can locate the
stable particles’ new equilibrium positions much faster than
the conventional method, the computer time needed for
AMDS is much shorter than for conventional MDS, for the
same problem. Let us now determine how much faster
AMDS is than CMDS. Let us consider N particles. We will
choose the surfaces sliding step �s=0.005a, and the time
step=0.001t0 for one iteration. For each surface’s sliding step
�s, we can count the average iteration number, defined as the
number of iterations needed for the surfaces to slide by �s
=0.005a, for AMDS and CMDS. For CMDS since the sur-
faces’ sliding speed is chosen to be 0.001a / t0, the sliding
distance for one iteration is 0.001�0.001a. So the iteration
number of N particles for each �s for CMDS is
0.005aN / �0.001�0.001a�=5000N. To estimate the iteration
number for the adiabatic method we have made use of the
fact that it is only necessary to make 100 iterations for each
�s for a stable well; when we switch to the conventional
method we have found that we only require about 500 itera-
tions for each �s for an unstable molecule to settle into a
neighboring stable well. At each �s if the average ratio of the
number of stable particles to total number of particles is b,
then the average number of stable particles is bN, and the
average number of unstable particles is �1−b�N. Hence, the
average iteration number for AMDS for a given �s is

100bN+500�1−b�N. Then at each �s the ratio of the average
iteration number for CMDS over AMDS is 5000N / �100bN
+500�1−b�N�=50/ �5−4b�. So the AMDS is 50/ �5−4b�
times faster than CMDS. When b is large, the AMDS is
much faster. That means when more potential wells are
stable at each �s, the AMDS is faster. Therefore, in our case,
the AMDS must be at least more than 10 times faster than
the CMDS.

During runs involving many interacting molecules, when
one molecule becomes unstable, several of its neighbors be-
come unstable as well. As a result, in such a situation it is
necessary to integrate coupled equations for these particles
using CMDS for about 500 iterations. For the positions of
stable particles that appear in these equations of motion, we
can use the old positions �i.e., before the �s step that we
initially do� to an excellent approximation, since, as men-
tioned earlier, the stable particle molecule positions change
very little in a single �s step.

III. MODELS USED IN OUR STUDY

We studied the model of two parallel crystalline surfaces
rotated with respect to each other with mobile molecules
trapped between them, and slid symmetrically with respect to
each other �i.e., in opposite directions by the same amount�
in the slow sliding speed limit, as illustrated in Fig. 2.

There are two parts to the interaction between a mobile
molecule and each surface. The conservative part is the po-
tential acting on a mobile molecule, for which we use the
Steele potential �3�, whose lowest-order Fourier series at a
given distance from a surface has the form

v1�r� = V0�
G

eiG·r, �1�

where the vectors G denote the smallest reciprocal lattice
vectors of a surface and V0 is the Fourier coefficient for the
smallest reciprocal lattice vectors for each surface plus the
interaction potential between two mobile molecules for
which we use the Lennard- Jones potential

VLJ�r� = − 4����/r�6 − ��/r�12� , �2�

where r is the distance between two particles, � is the energy
parameter in the Lennard-Jones potential, and � is the sur-
face’s length parameter.

For the nonconservative part we use the damping force

FIG. 2. Illustration of two parallel surfaces rotated with respect
to each other and then slid symmetrically with respect to each other.
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F�,i
nc = − �mi�vi − v�� , �3�

where F�,i
nc is a nonconservative force acting on the ith par-

ticle from the �th surface ��= t for the top and b for the
bottom surface�, � is the damping constant, mi is the mass of
ith particle, vi is the velocity of ith particle, and v� is the
sliding velocity of the �th surface.

We have studied two two-dimensional triangular lattice
surfaces, which are rotated with respect to each other by an
arbitrary angle �as this is what normally occurs for two crys-
talline surfaces in contact�. Because of this rotation, the re-
sultant potential is incommensurate. For one triangular lat-
tice surface model system, we chose the lowest-order term in
the Fourier series for Steele potential, which is given by

v1�x,y� = V0�2 cos��2�/a�x�cos��2�/31/2a�y�

+ cos��4�/31/2a�y�� , �4�

where a is lattice constant.
When we rotate one surface with respect to other by an

angle � and then we slide two surfaces symmetrically with
respect to each other �i.e., by equal movements in opposite
directions� with displacement ��x ,�y� and sliding direction
angle � with respect to the x axis, for the top surface we get

vt�x,y� = v�xt,yt� , �5�

where

xt = �x + �x/2�cos��� + �y + �y/2�sin��� , �6�

yt = − �x + �x/2�sin��� + �y + �y/2�cos��� , �7�

and for the bottom surface we get

vb�x,y� = v�xb,yb� , �8�

where

xb = �x − �x/2�cos��� − �y − �y/2�sin��� , �9�

yb = �x − �x/2�sin��� + �y − �y/2�cos��� , �10�

where the displacement �x=s0 cos���+b sin���, �y
=s0 sin���−b cos���, where s0=vt. Here v is the sliding
speed of the top surface relative to the bottom surface along
sliding direction angle � and b is the perpendicular distance
�in x-y plane� of the path taken by the origin of the top
surface from the origin of the bottom surface.

IV. MOLECULE INSTABILITIES AND EQUILIBRIUM
POSITIONS

We study many molecules’ instabilities with intermolecu-
lar interaction in the slow sliding speed limit. In a stable
potential well, which is occupied by the molecule, the mol-
ecule will try to reach its new equilibrium position as the
surface is sliding. When the potential well that is occupied
by the molecule becomes unstable, the molecule will quickly
jump into the nearest stable well. When this occurs, the mol-
ecule’s kinetic energy increases from close to zero �when it is
in the minimum of a stable potential well� to a value equal to

the drop in the molecule’s potential energy that occurs when
the well becomes unstable. In the slow sliding speed limit, it
is reasonable to assume that this molecule remains in its new
potential minimum long enough for all of its kinetic energy
to get absorbed by the various energy excitations of the sys-
tem which is simulated by the damping force given in Eq.
�3�. This is expected to be the main source of dissipation in
the slow sliding speed limit. Thus, it is reasonable to assume
that dissipation due to kinetic friction is due to instabilities.
From the energy dissipation we can calculate kinetic friction.
In CMDS, the time-averaged energy dissipation due to the
damping force is given by �4�

�1/	��
0

	

�mi��vi − v0�2 + �vi + v0�2�dt

= �1/	��
0

	

2�mi�vi
2 + v0

2�dt , �11�

where 	 is the duration of the simulation, � is damping con-
stant, mi is mass of ith unstable particle, and vi is the velocity
of ith unstable particle. v0 is the velocity of surface sliding.

Then we can calculate the time-averaged kinetic friction
force, Fk, from this average energy dissipation given by Eq.
�11�.

Fk = �1/	v0��
i

2��
0

	

mi�vi
2 + v0

2�dt . �12�

In AMDS, the force of friction is calculated in the same way,
but only the contribution from the dissipation that occurs for
particles that become unstable is included.

V. COMPARISON OF THE RESULTS OF ADIABATIC
AND CONVENTIONAL MDS FOR A 2-
AND A 20-MOLECULE SYSTEM WITH
INTERMOLECULAR INTERACTIONS

For our simulations, using conventional MDS, we chose
the velocity of surface sliding as 0.001a / t0 and time step of
sliding as 0.001ti. At each sliding step, we solve the equa-
tions of motion for all particles in order to get all particles’
positions.

In adiabatic MDS, for stable wells, we chose the sliding
step of surfaces �s=0.005a, and at each sliding step we it-
erate the Langevin equation 100 times to get the particles’
new equilibrium positions. For unstable wells, the iteration
number is 	500 at each �s.

We first use conventional and adiabatic MDS methods
separately to deal with a two-interacting-molecule system,
followed by a 20-interacting-molecules system, and then a
100-interacting-molecules system. We chose an initial den-
sity such that the distance between two neighboring atoms is
0.9a. For 20 atoms, we initially place the molecules at the
interface in a triangular lattice configuration of lattice con-
stant 0.9a. We rotated the two parallel surfaces at angle
0.1485 rad and then slid the two surfaces symmetrically with
respect to each other from origin at a given sliding direction
angle 0.1309 rad. We calculate the total minimum potential
and time-averaged kinetic friction.
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The following are results for a two-interacting-particle-
system simulation by CMDS and AMDS. We chose the two
particles’ initial positions as follows: particle 1’s initial posi-
tion �x ,y� is �0.0, 0.0�, particle 2’s initial position �x ,y� is
�0.450 000a ,0.779 423a�. Two surfaces symmetrically slide
with respect to each other from origin up to 2 lattice con-
stants. We chose the energy parameter � to be 0.5V0 and
chose length parameter � to be 0.618 034a in the Lennard-
Jones potential. The damping constant � is 1.35�V0 /ma2�1/2.

In AMDS in stable wells when the ratio of change of a
particle’s position in 100 iterations divided by 0.0003 is
larger than 1, we assume that particle to be unstable and then
switch to the conventional method to deal the particle. In
unstable wells when the ratio of change of a particle’s posi-
tion in one iteration divided by 0.00001 is less than 1, we
assume that particle to be stable and then switch back to the
adiabatic method to treat the particle. The results obtained
using both methods are very close, as can be seen in Figs.
3–7. We calculate the time factor, defined previously as
50/ �5−4b�. Here b is almost 1; therefore, the time factor is
50. Thus, the AMDS is almost 50 times faster than CMDS.

Now we present results for a 20-interactive-particle-
system simulation by CMDS and AMDS. We chose the en-
ergy parameter � to be 0.5V0 and the length parameter � to
be 0.618 034a in the Lennard-Jones potential. As before, the
damping constant � is 1.35�V0 /ma2�1/2. We began our plots
after a sliding distance equal to 1.5a and continue the plot up
to 20.0a. We calculated time-averaged kinetic friction force

FIG. 3. Two particles’ total minimum potential value vs surfaces
sliding distance. The unit of minimum potential value is energy unit
v0 �strength of Steele potential�, and the unit of surfaces sliding
distance is length unit a �surface lattice constant�. Top figure pre-
sents CMDS results; bottom figure, AMDS results.

FIG. 4. Particle 1’s �x ,y� coordinates vs surfaces sliding distance. The units for both the x and y axes are length unit a �surface lattice
constant�. Left is for CMDS, and right is for AMDS. From these figures, we can find two instabilities for particle 1; one is around the
surfaces sliding distance 0.5a, and another one is around the surfaces sliding distance 1.5a.
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for the 20-particle system. In AMDS, the criterion used for
classifying a well as unstable, and hence switching briefly to
CMDS, was described in the previous paragraph. There is
very good agreement between the results found using CMDS
and those found using AMDS. We now calculate the time
factor, defined previously as 50/ �5−4b�. In this case b is
0.55, therefore, the time factor is 17.86. The value of this
time factor, determined by taking the ratio of the time to do
our 20-particle simulations using CMDS and AMDS, agrees
quite well with these estimates. Thus the AMDS is almost 18
times faster than CMDS for the 20-particles case. Results for
the force of friction, determined from Eq. �12�, are given
in Fig. 7.

In contrast to the simulations that we have discussed in
this section and in Sec. VI, in which the interparticle inter-
actions are relatively weak, for strongly interacting systems,
most particles become unstable at almost every value of the
sliding distance. When we use AMDS for such a system, we
must calculate the change of the unstable particle positions
very accurately because the change of one particle’s position
depends strongly on other unstable particles’ positions. Thus,
when we deal with unstable particles in strongly interacting
particle systems, we must use many more iterations to cal-
culate the positions of the unstable particles, which means
we must use as many iterations as we use in CMDS. This, of
course, is not surprising because, when most of the particles
become unstable, it is necessary to use CMDS for almost all
the particles. This will greatly decrease the speed of the cal-

culation when we use AMDS, when most particles are un-
stable. In fact, we found in our simulations that when the
average fraction of particles which are stable, b, is less than
0.5, we need to use many more iterations to calculate the
unstable particle positions.

VI. STUDY OF 100 MOLECULES TRAPPED BETWEEN
TWO SURFACES USING AMDS

The following are results for a 100-interacting-particle-
system simulation by AMDS. We use the same values for �
and � for the 100 as we used for the 20-atom system.

The value for the force of friction per adsorbed molecule
that we obtain in our work is 
1.0V0 /a, which is compa-
rable to what we found in Ref. �2� �which neglects interac-
tions�, which implies that the intermolecule interaction does
not have a large effect on the friction, even for the relatively
high concentrations of molecules �i.e., a large fraction of a
monolayer� considered in our 100-molecule runs, as can be
seen from the left panel of Fig. 8. As the run progresses,
however, the molecules spread out considerably, as can be
seen in the right panel. This probably accounts for the fact
that the friction decreases slowly during the run, as can be
seen in Fig. 9. These results imply that for submonolayer
concentrations of adsorbed molecules, the friction appears to
increase with increasing concentration, which is in qualita-
tive agreement with Ref. �4�, which reports results of CMDS
for the Muser-Robbins model. We also find that for the high

FIG. 5. Particle 2’s �x ,y� coordinates vs surfaces sliding distance. The units for both the x and y axes are length unit a �surface lattice
constant�. Left is for CMDS, and right is for AMDS. From these figures, we can find two instabilities for particle 2; one is around the
surfaces sliding distance 0.3a, and another one is around the surfaces sliding distance 1.3a.
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concentrations that we consider, there are multiparticle insta-
bilities, as was found in Ref. �4�. In our AMDS calculations,
they manifest themselves due to the fact that we generally
find that when our criterion for a molecule becoming un-
stable is satisfied, the criterion is also satisfied for several
neighboring molecules as well.

VII. STUDY OF A FIVE-MOLECULES SYSTEM WITH
STRONG INTERMOLECULAR INTERACTION BY CMDS

For the 100-atom system with relatively weak interatomic
interaction �in comparison to V0�, we found that the adsorbed
atoms tended to separate as the surfaces slid relative to each
other. We believe that for stronger interactions, the atoms
will not separate. In order to confirm this, we studied a sys-
tem with five strongly interacting atoms by CMDS. For these
calculations, we chose the interaction � to be 3V0 and chose
length parameter � to be the value chosen in the previous
section in the Lennard-Jones potential, and the same value of
� as before. In Fig. 10, we plot the five atoms’ positions at
surfaces sliding distance equal to 10a and 200a. From Figs.
10�a� and 10�b�, we observe that the particles do not spread
out in this case, presumably due to the stronger interactions
between particles. We did not attempt to use the AMDS in
these calculations because, as noted above, for the strong
interaction system, the AMDS is not as fast for a strongly

interacting system as it is for a weakly interacting one. The
reason for this is that the atoms tend to move together, and
hence when one atom becomes unstable, they all do.

VIII. SUMMARY

We have developed an adiabatic molecular-dynamics
method �AMDS� for the Muser-Robbins model for dry fric-
tion. In AMDS, if we slide the two surfaces symmetrically
with respect to each other, when the wells are stable, the
particles’ equilibrium positions do not significantly change.
This allows us to quickly locate the stable particles’ new
equilibrium positions. We do not need to track the motion of
each stable particle as in conventional MDS.

In adiabatic MDS, when the wells are stable, we use the
adiabatic method to deal with them. When the wells are un-
stable, we switch to the conventional method to deal with
those unstable wells. Conventional MDS deals with stable
wells and unstable wells in the same way. Adiabatic MDS
can save much computer time when it treats stable wells
because it determines changes in the locations of stable
wells, which occur as a result of surface sliding, much more
rapidly. The simulation results from these two methods are
almost identical, but the adiabatic MDS is more than a factor
of 10 faster.

We hope in the future to explore the possibility of apply-
ing similar adiabatic simulation methods to other systems in

FIG. 6. Time-averaged kinetic friction for the two-particle sys-
tem vs surface sliding distance are plotted. The unit of kinetic fric-
tion force is the force unit v0 /a �V0 is energy unit, a is the length
unit�, and the unit of surfaces sliding distance is length unit a. Top
figure presents the results for CMDS; bottom figure, results for
AMD.

FIG. 7. Time-averaged kinetic friction for the 20-particle system
vs surface sliding distance are plotted. The unit of kinetic friction
force is the force unit V0 /a �v0 is energy unit, a is the length unit�,
and the unit of surfaces sliding distance is length unit a �top:
CMDS; bottom: AMD�.

J. ZHANG AND J. B. SOKOLOFF PHYSICAL REVIEW E 71, 066125 �2005�

066125-6



which the response of the system to a slowly varying param-
eter is dominated by microscopic instabilities �as we found to
be the case in the present problem�.

In the future, we plan to explore whether the use of other
methods for minimizing the potential energy �such as the
conjugate gradient method �5�� might improve the speed of
our adiabatic method.

ACKNOWLEDGMENT

We wish to thank the Department of Energy �Grant No.
DE-FG02-96ER45585�. We also would like to thank C. Daly
for useful ideas and insights.

APPENDIX A: ADIABATIC APPROXIMATION FOR
SLIDING SURFACES

In the extreme adiabatic approximation, the surfaces are
assumed to slide so slowly that the molecule remains at a
potential minimum at all times. Let us consider the case of a
single molecule at the interface. Using the fact that the po-
tential acting on a molecule at an interface is given by

V�r� = V1„r + �1/2�s… + V2„r − �1/2�s… , �A1�

where V1 is the potential due to surface 1 acting on the mol-
ecule, V2 is V1 rotated around the origin, and s is the dis-
placement vector of surface 1 with respect to surface 2. Then

FIG. 8. The x vs y coordinates of the 100 particles’ positions.
The top figure shows the 100 particles’ positions at surfaces
sliding distance equal to 15a. The bottom figure is for 100
particles’ positions at surfaces sliding distance equal to 200a. The
units for both x and y axes are length unit a �surface lattice
constant�.

FIG. 9. Time-averaged kinetic friction for the 100 particles
system vs surfaces sliding distance are plotted. The unit of
kinetic friction force is force unit V0 /a �V0 is energy unit, a
is length unit�, and the unit of surfaces sliding distance is length
unit a.

FIG. 10. The x vs y coordinates of the five particles’ positions.
The top panel shows the five-particles’ positions at surfaces sliding
distance equal to 10a. The bottom one is for the five-particles’
positions at surfaces sliding distance equal to 200a. The units for
both x and y axes are length unit a �surface lattice constant�.
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a potential minimum position at time t, denoted by rmin�t� is
the solution to

�V�rmin�
�x


= 0, �A2�

where x
=x ,y ,z for 
=1,2 ,3, respectively. If s changes by
a small amount �s during sliding, rmin should change by a
small amount �rmin, given by

�V�rmin�
�x


= � �V�rmin
0 �

�x

�

�s=0
+ �

�

�D
,��xmin
� + M
,��s�� = 0,

�A3�

where rmin
0 is the equilibrium position of the molecule for

�s=0 and

M
,� = ��1/2�� �2V1„r + �1/2�s…
�x
�x�

−
�2V2„r − �1/2�s…

�x
�x�

�

rmin
0

�A4�

and

D
,� = �� �2V1„r + �1/2�s…
�x
�x�

+
�2V2„r − �1/2�s…

�x
�x�

�

rmin
0

.

�A5�

By the definition of rmin
0 , the first term on the right-hand side

of Eq. �3A� is zero. Thus, as long as the minimum in ques-
tion is not unstable �which means that the matrix D can be
inverted�, we can find the components of �r�min by solving
Eq. �3A�, giving

�xmin

 = − �

�,��

D
,�
−1 M�,���s��. �A6�

Since in molecular dynamics it is impossible to slide the
surfaces at infinitesimal speed, there is always a correction to
the adiabatic approximation, meaning that the actual position
of the molecule is r�min+�r�, where �r� is the correction to the
adiabatic approximation, which in the slow speed limit
should be small. Then the equation of motion is

mẍ
 + m�ẋ
 = −
�V

�x


� − �
�

�2V

�x
�x�

�x�. �A7�

In the slow sliding speed limit, we can neglect the inertial
term �the first term on the left-hand side� compared to the
damping term. The solution to Eq. �A7� is

�x
 = − �
�

G
,��ẋmin

 �A8�

where G is the phonon Green’s function,

� d
e−i
t�im�
�
,� − m−1 �2V

�x
�x�

−1

. �A9�

For slow speed motion �at which only small values of 

contribute to G, G�
0

−2, where 
0 is a harmonic approxi-
mation frequency for a typical potential well. Then from Eq.
�A8� to a good approximation

�x
 � ��/
0
2�ẋmin


 . �A10�

Thus, the criterion for the validity of the adiabatic approxi-
mation �namely, that the amount that the molecule’s position
differs from the location of the well minimum must be much
smaller than a lattice spacing� is given by ��x
��a, which
from Eq. �A10� becomes


0
2 � �ẋmin


 /a . �A11�

Dividing Eq. �A5� by the time that it takes to slide the sur-
faces by �s
, we find that away from instabilities, ẋmin


 � ṡ


and hence the criterion in Eq. �A11� becomes


0
2 � �ṡ
/a . �A12�

In adiabatic molecular dynamics, we change s by an
amount �s and integrate the equations of motion to get the
particle to settle into its new potential minimum. Since the
new equilibrium position of the particle is very close to the
old one, we can use the harmonic approximation for the
equations. Then we must solve the equation of motion

ẍ + �ẋ + 
0
2x = 0, �A13�

where 
0= �K /m�1/2 where K is the force constant of the
potential well, for the initial conditions x�t=0�=�xmin and
ẋ�t=0�=0. The solution is

x = x0e−�t/2�cos�
1t� +
�

2
1
sin�
1t�
 , �A14�

where 
1= �
0
2−�2 /4�1/2. When 
0�� /2 the time to settle

into new well is about 2 /�. For 
0=� /2, it is �−1, and for

0�� /2, it is about � /
0

2, which is much longer than �−1.
Thus we get optimum damping for 
0 greater than or equal
to �−1. For many particles, you get a similar harmonic ap-
proximation equation of motion for each of the phonon
modes. This implies that it is necessary to wait at least a time
as long as �−1 for the oscillations to settle down completely.
In practice, we have found that it is only necessary to wait
one-tenth as long since the amplitudes of these oscillations x0
quite small �i.e., of the order of ��rmin� given by Eq. �A6��.
The reason for this might be due to the fact that initially x
drops from x0 to a much smaller value as part of its damped
oscillations. Thus, since if 
1 is significantly greater than �,
the cosine term in Eq. �A14� dominates, and hence if we wait
for an amount of time comparable to about a quarter of the
oscillation period, x will be quite close to zero. Although the
velocity of the molecule will not be zero, this does not intro-
duce an error in the friction. The reason for this is that in the
adiabatic method the frictional dissipation, and hence the
force of friction that is calculated from it, is assumed to be
due only to the energy losses that occur as molecules drop
out of unstable wells into stable ones of lower energy. Thus,
the velocities attained by molecules in stable wells as they
drop into their new equilibrium positions after the surfaces
are slid by �s are not included in the calculation of the
friction.

At the beginning of this Appendix, we considered the
single-molecule case. We would now like to consider how
the equilibrium position of a molecule changes as the sur-
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faces are slid by a small amount for many interacting par-
ticles. Let us consider the equilibrium condition for the jth
mobile molecule �i.e., the analog of Eq. �A3� for interacting
molecules�

�V�r j,min�
�xj,


= � �V�r j,min
0 �

�xj,

�

�s=0
+ �

��j

�vi�r j,min
0 − r�,min

0 �
�xj,


+ �
�

�D
,��xmin
� + M
,��s��

− �
�,��j

�2vi�r j,min
0 − r�,min

0 �
�xj,
�x�,�

���xj,min,�� j,� − �x�,min,�� = 0, �A15�

where the matrices are those defined in Eqs. �4� and �5� and
where r j,min

0 is the equilibrium position for the jth molecule

for �s=0. By the definition of r j,min
0 the sum of the first two

terms on the right-hand side of Eq. �A15� vanishes. Formally
solving Eq. �A15� for �xj,min,
 we obtain in place of Eq. �A6�

�xmin

 = − �

�,��

D
,�
−1 �M�,���s��

− �
�,��j

�2vi�r j,min
0 − r�,min

0 �
�xj,��x�,�

��xj,min,�� j,� − �x�,min,��
 .

�A16�

In practice, we find in our simulations that for stable wells,
the determinant of the matrix D is about 1000 times the
matrix elements of the matrices D and M �2�. As a result, the
components of �rmin, given by Eq. �A16� are of the order of
one thousandth of �s.
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